Microbubbles are detected prior to larger bubbles following decompression.
نویسندگان
چکیده
Using dual-frequency ultrasound (DFU), microbubbles (<10 μm diameter) have been detected in tissue following decompression. It is not known if these microbubbles are the precursors for B-mode ultrasound-detectable venous gas emboli (bmdVGE). The purpose of this study was to determine if microbubbles could be detected intravascularly postdecompression and to investigate the temporal relationship between microbubbles and larger bmdVGE. Anesthetized swine (n = 15) were exposed to 4.0-4.5 ATA for 2 h, followed by decompression to 0.98 ATA. Microbubble presence and VGE grade were measured using DFU and B-mode ultrasound, respectively, before and for 1 h postdecompression, approximately every 4-5 min. Microbubbles appeared in the bloodstream postdecompression, both in the presence and absence of bmdVGE. In swine without bmdVGE, microbubbles remained elevated for the entire 60-min postdecompression period. In swine with bmdVGE, microbubble signals were detected initially but then returned to baseline. Microbubbles were not detected with the sham dive. Mean bmdVGE grade increased over the length of the postdecompression data collection period. Comparison of the two response curves revealed significant differences at 5 and 10 min postdecompression, indicating that microbubbles preceded bmdVGE. These findings indicate that decompression-induced microbubbles can 1) be detected intravascularly at multiple sites, 2) appear in the presence and absence of bmdVGE, and 3) occur before bmdVGE. This supports the hypothesis that microbubbles precede larger VGE bubbles. Microbubble presence may be an early marker of decompression stress. Since DFU is a low-power ultrasonic method, it may be useful for operational diving applications.
منابع مشابه
Microbubble detection following hyperbaric chamber dives using dual-frequency ultrasound.
Venous gas emboli (VGE) can be readily detected in the bloodstream using existing ultrasound methods. No method currently exists to detect decompression-induced microbubbles in tissue. We hypothesized that dual-frequency ultrasound (DFU) could detect these microbubbles. With DFU, microbubbles are driven with two frequencies: a lower "pump" (set to the resonant frequency of the desired bubble si...
متن کاملFinal Report: Portable Sensor for Detecting Microbubbles in Real Time to Prevent Decompression Sickness for Safe Diving During Subaquatic Navy Activities
Number of Papers published in peer-reviewed journals: Number of Papers published in non peer-reviewed journals: Final Report: Portable Sensor for Detecting Microbubbles in Real Time to Prevent Decompression Sickness for Safe Diving During Subaquatic Navy Activities Report Title The objective of this research project was to determine the feasibility of a new technology that would allow Navy dive...
متن کاملCirculatory bubble dynamics: from physical to biological aspects.
Bubbles can form in the body during or after decompression from pressure exposures such as those undergone by scuba divers, astronauts, caisson and tunnel workers. Bubble growth and detachment physics then becomes significant in predicting and controlling the probability of these bubbles causing mechanical problems by blocking vessels, displacing tissues, or inducing an inflammatory cascade if ...
متن کاملThe Trouble with Bubbles
Recent debate amongst some sections of the diving community has concerned the relative benefits of using new ascent and decompression strategies based on calculations of the presence and behaviour of microbubbles. This debate has extended to concern over the relative safety of standard entry level agency decompression/no stop tables. The concern stems from the fact that recent research and opin...
متن کاملSignals consistent with microbubbles detected in legs of normal human subjects after exercise.
Exercise may produce micronuclei (presumably gas-filled bubbles) in tissue, which could serve as nucleation sites for bubbles during subsequent decompression stress. These micronuclei have never been directly detected in humans. Dual-frequency ultrasound (DFU) is a resonance-based, ultrasound technique capable of detecting and sizing small stationary bubbles. We surveyed for bubbles in the legs...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 116 7 شماره
صفحات -
تاریخ انتشار 2014